

# *NAMIBIA UNIVERSITY*

## OF SCIENCE AND TECHNOLOGY

### **FACULTY OF HEALTH AND APPLIED SCIENCES**

### DEPARTMENT OF ACCOUNTING, ECONOMICS AND FINANCE

| QUALIFICATION : BACHELOR OF ECONOMICS |                           |  |
|---------------------------------------|---------------------------|--|
| QUALIFICATION CODE: 07BECO            | LEVEL: 7                  |  |
| COURSE CODE: ECM712s                  | COURSE NAME: ECONOMETRICS |  |
| SESSION: JULY 2019                    | PAPER: THEORY             |  |
| DURATION: 3 HOURS                     | MARKS: 100                |  |

| SECOND OPPORTUNITY EXAMINATION QUESTION PAPER |                     |  |
|-----------------------------------------------|---------------------|--|
| EXAMINER(S)                                   | MR. PINEHAS NANGULA |  |
| MODERATOR:                                    | DR. R KAMATI        |  |

| INSTRUCTIONS |                                              |  |
|--------------|----------------------------------------------|--|
| 1            | Answer ALL the questions in section A and B. |  |
| 2            | Write clearly and neatly.                    |  |
| 3            | Number the answers clearly.                  |  |

#### **PERMISSIBLE MATERIALS**

- 1. Scientific calculator
- 2. Pen and Pencil
- 3. Ruler

THIS QUESTION PAPER CONSISTS OF \_5\_ PAGES (Including this front page)

#### **MULTIPLE CHOICE QUESTIONS**

- 1. OLS stands for what in Econometrics?
  - a) Optimally Linearized Solution
  - b) There is no such thing in Econometrics
  - c) The only rock band that Econometricians are crazy about
  - d) Ordinary Least Squares
- 2. Data collected at a point in time is called
  - a) Cross-sectional data
  - b) Time series data
  - c) Pooled data
  - d) Panel data
- 3. Data collected for a variable over a period of time is called
  - a) Cross-sectional data
  - b) Time series data
  - c) Pooled data
  - d) Panel data
- 4. In the estimated model  $log \widetilde{Q_i} = 2.25 0.7 log P_i + 0.02 Y_i$ , where p is the price and q is the quantity demanded of a certain good and Y is disposable income, what is the meaning of the coefficient on log P?
  - a) If the price increases by 1%, the demanded quantity will be 0.007% lower on average, ceteris paribus—
  - b) If the price increases by 1%, the demanded quantity will be 70% lower on average, ceteris paribus
  - c) If the price increases by 1%, the demanded quantity will be 0.7% lower on average, ceteris paribus
  - d) None of the answers above is correct
- 5. In the estimated model  $log Q_i = 2.25 0.7 log P_i + 0.02 Y_i$ , where p is the price and q is the quantity demanded of a certain good and Y is disposable income, what is the meaning of the coefficient on logY?
  - a) If disposable income increases by a thousand dollars, the demanded quantity will be 0.02% higher on average, ceteris paribus
  - b) If disposable income increases by a thousand dollars, the demanded quantity will be 0.0002% higher on average, ceteris paribus
  - c) If disposable income increases by a thousand dollars, the demanded quantity will be 2% higher on average, ceteris paribus

- d) None of the answers above is correct
- 6. Which of the following are alternative names for the dependent variable (usually denoted by y) in linear regression analysis?
  - a) The regressand
  - b) The regressor
  - c) The explanatory variable
  - d) None of the above
- 7. . Which of the following statements is TRUE concerning OLS estimation?
  - a) OLS minimises the sum of the vertical distances from the points to the line
  - b) OLS minimises the sum of the squares of the vertical distances from the points to the
  - c) OLS minimises the sum of the horizontal distances from the points to the line
  - d) OLS minimises the sum of the squares of the horizontal distances from the points to the
- 8. The residual from a standard regression model is defined as
  - a) The difference between the actual value, y, and the mean, y-bar
  - b) The difference between the fitted value, y-hat, and the mean, y-bar
  - c) The difference between the actual value, y, and the fitted value, y-hat
  - d) The square of the difference between the fitted value, y-hat, and the mean, y-bar
- 9. Which one of the following statements best describes the algebraic representation of the fitted regression line?
  - a)  $\hat{y}_t = \hat{\alpha} + \hat{\beta}x_t + \hat{u}_t$

  - b)  $\hat{y}_t = \hat{\alpha} + \hat{\beta}x_t$ c)  $\hat{y}_t = \hat{\alpha} + \hat{\beta}x_t + u_t$
  - d)  $y_t = \hat{\alpha}t + \hat{\beta}x_t + \hat{u}$ ,
- 10. Which one of the following statements best describes a Type II error?
  - a. It is the probability of incorrectly rejecting the null hypothesis
  - b. It is equivalent to the power of the test
  - c. It is equivalent to the size of the test
  - d. It is the probability of failing to reject a null hypothesis that was wrong

[80 MARKS]

### Answer All questions in this section

Question One [20 marks]

The following is the econometric model which is presented in four different forms. You are require to interpret each of them.

- a)  $\hat{C} = -184.078 + 0.70641$ Income [5 marks]
- b)  $\hat{C} = -30918.072 + 4022.73841 \text{LogIncome}$  [5 marks]
- c) LogC = 7.203 + 0.00018 [5 marks]
- d) LogC = -0.7957 + 1.0464 Logincome [5 marks]

Question Two [20 marks]

- a) The following are linear intrinsically linear regression models. You are required to transform them into linear regression models
  - $lnY_i = \frac{1}{1 + e^{\frac{\beta_1}{2} + \frac{\beta_2}{2} \frac{\beta_1 + \mu_1}{2}}}$  [4 marks]
  - $\ln V_i = \frac{1}{\beta_1 + \beta_2 X_i + u_i} \eqno(4 \text{ marks})$
- $Y_i = \frac{x^2}{\exp(\beta_1 + \beta_2 X_i + u_i)}$  [4 marks]
- iv.  $lnV_i = 1 + exp(-\beta_1 \beta_2 X_i)$  [4 marks]

Question Three [25 marks]

The following is a hypothetical data on weekly family consumption expenditure Y and weekly family income X.

| <i>Y,</i> N\$ | <i>X</i> , N\$ |
|---------------|----------------|
| 70            | 80             |
| 65            | 100            |
| 90            | 120            |
| 95            | 140            |
| 110           | 160            |
| 115           | 180            |
| 120           | 200            |
| 140           | 220            |
| 155           | 240            |

- a) Estimate  $\beta_1$  and  $\beta_2$  from the data above which meet the following condition  $E(u_i)=0$  and interpret the coefficients [12 marks]
- b) If the value of  $r^2$  is 0.96, interpret it.

[5 marks]

a) What is the role of the stochastic error term  $u_i$  in regression analysis? What is the difference between the stochastic error term and the residual term? [8 marks]

| Question Four |                                                                                                                            | [15 marks] |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------|------------|--|
| a)<br>b)      | Discuss five practical consequences of multicollinearity What are dummy variables and why are they important in the model? | [10 marks] |  |

All the best